Home Contact Us
About Us Institutes Classrooms Forums Blogs V-Lab Contents

User ID :
Password :

Forgot Passsword ?  |   Join Us

Click Here For Login

more

RAGGING-CAN BE GIVEN A MORE POSITIVE DIRECTION
posted on 02 May 2009
by:anshu chaudhry
PARENTS MUST HAVE REALISTIC EXPECTIONS
posted on 02 May 2009
by:anshu chaudhry
SOCIALISATION -THE FOUNDATION 0F HUMAN LIFE
posted on 29 Apr 2009
by:lalit kumar
CBSE Multimedia Animated CD DVD : Free Delivery Dial 01164614067
posted on 28 Mar 2009
by:TopRank India
JUST PASS IT ON..........
posted on 24 Mar 2009
by:anshu chaudhry
SHARING-THE BEST WAY TO GO!
posted on 24 Mar 2009
by:anshu chaudhry
OBESITY ON THE RISE IN CHILDREN
posted on 24 Mar 2009
by:anshu chaudhry
INSTILL HEALTHY EATING HABITS IN YOUR CHILDREN
posted on 24 Mar 2009
by:anshu chaudhry
Schoolsonweb
posted on 20 Feb 2009
by:Poo
DEALING WITH MOOD SWINGS!!!:-(
posted on 15 Feb 2009
by:priyannkaa dey
 
Virtual Lab- Experiment
Oscillations: Damped and forced
Oscillations Damped and forced oscillations: resonance (k) describe graphically how the amplitude of a forced oscillation changes with frequency near to the natural frequency of the system, and understand qualitatively the factors which determine the frequency response and sharpness of the resonance.



When the driving frequency is equal to the natural frequency of the oscillating system, maximum energy is transferred from the periodic force (driver) to the oscillating system which will vibrate with maximum amplitude. This phenomenon is called resonance.



Frequency Response Graph (under different degrees of damping)

The Effect of Damping on Forced Oscillations

When damping is present, it reduces the amplitude (y-axis) of the forced oscillation for all driver frequencies (x-axis) and it causes the maximum amplitude to be reached when the driving frequency is a little less than the natural frequency.

This reduction in amplitude is more significant at the resonance frequency and frequencies close to it, so that we say damping reduces the sharpness of resonance -- that is, the oscillating system responses little (small change in the amplitude) over a wide range of frequencies.

Copyright 2007 www.MeraCollege.com | Terms & Conditions | Privacy Policy